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Introduction

The focus of our activities has been the growth of epitaxial GaN/Si. The work has
focused on demonstrating feasibility of low-temperature VPE processes for high growth
rate of pure and stoichiometric GaN films. The development of the process evolved as

follows:

~

1) Testing and screening of potential chemical sources for GaN.

2) Initial optimization of the process with Gal,
-variations in the process parameters
(wafer temperature, sublimation source temperature, process pressure , carrier gas
flow, deposition time, and reactant gas flow)
-measurements of the quality of deposited film
(reproducibility, stoichiometry, growth rate, contamination level).

3) Final optimization of the GaN deposition (contamination level and crystalinity)
-determination of the influence of ex-situ and in-situ preparations of the silicon
surface on the GaN film characteristics.
-determination of the influence of the in-situ annealing on the GaN film
characteristics.

4) Identification of the appropriate seed layer (improved crystalinity of the GaN film)
-growth of InN buffer layer
-growth of AIN buffer layer

5) Characterization of the GaN/AIN bi-layer.

Film characteristics were measured by the following analytical techniques:
X-ray Diffraction (XRD) - crystalinity of the film,
Rutherford Back Scattering (RBS) - stoichiometry of the films, contamination levels,
Atomic Force Microscopy (AFM) - film morphology and its roughness,

X-ray Photoemission Spectroscopy (XPS) - stoichiometry of the films, contamination
levels

o Auger Electron Spectroscopy (AES) - stoichiometry of the films, contamination levels




1) Testing and screening of potential chemical sources for GaN.

In terms of the chemical synthesis, the strategy was to select a Ga compound in
which the dissociation energy of the primary bonds is relatively low and
recombination can be interrupted by the presence of the nitrogen. Two general
approaches were proposed for development of the precursor for GaN deposition, one

which relies primarily on inorganic chemistry, the other on organometalic chemistry.

During this research period, work was focused on the inorganic route. The
candidate chosen was gallium iodide, Gal;. This compound is promising since there
are precedents for low temperature decomposition of other iodide chemistries such as
Tils, through a reaction with NH3 to generate pure TiN. While the chemistry of the Ga
system is not exactly analogous to that of the Ti system, the TiN work gave a clear
indication of the ability of iodides to undergo dissociation and recombination reactions

at temperatures considerably lower than the chloride compounds (e.g. TiCl,).

2) Initial optimization of the process with Gal,

Accordingly, the process development work focused on the growth of GaN/Si
using Gal3 as a Ga source and NH3 as a nitrogen source. More then 30 GaN test runs
were performed to establish a process baseline and determine associated film
properties: stoichiometry, purity, and reproducibility. The following process

parameter window was investigated:

Wafer temperature: 450 -5500C
Source temperature: 150-2300C
Process pressure: 0.2- 1.5 Torr
Reactant gas flow (NH3): 200 - 1000 sccm
Reactant gas flow (H2): 0 - 300 sccm
Carrier gas flow (He or Hp): 10 - 500 sccm
Deposition time: 2 - 15 min.
~ Figures 1-3 show that the average growth rate increased with increased source

temperature, substrate temperature, and carrier gas flow. ~ Variation in  chamber
pressure showed that the highest growth rate was achieved at 0.8Torr. Typical

growth rates were in the range of 60 - 120 A/min. Figures 1 - 3 illustrate the discussed

trends.
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The desirable film stoichiometry was achieved. The Ga to N ratio is 1+ 0.1%, as
measured by RBS (Figure 4). This is a significant milestone, given the fact that the
process temperature was in the range 500-550°C, which is significantly lower than the
temperature (>1000°C) used in conventional MOCVD of GaN. Incomplete precursor
decomposition can result in high levels of iodide contamination. Films showed 0.2 -
0.5 at% incorporation of iodide, and less than 0.1at% iodide when processed at a
substrate temperature of 500°C and 550°C respectively. This was attributed to the
availability of more thermal energy at higher substrate temperatures to ensure a more

complete precursor decomposition.
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Fig. 4 RBS Results

The levels of oxygen in the film were reduced to 3 at%, with most of the oxygen
being present at the film’s surface and interface, as measured by XPS (Figure 5). The
surface oxygen is due to air exposure leading to oxidation after removal from the CVD
reactor, while interface oxygen is due to silicon surface oxide prior to processing. It

was clear that in-situ or ex-situ silicon surface pre-deposition cleaning was needed.
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3) Final optimization of the GaN deposition .

3.1 Determination of the influence of ex-situ and in-situ preparations of the silicon

surface on the GaN film characteristics.

For epitaxial growth of GaN on Si it is essential to start with a clean, oxygen-free
silicon surface, therefore different cleaning techniques have been investigated. The Si
substrates were rinsed in Acetone, Ethanol and DI water and then outgased in the load
lock prior to their introduction to the deposition chamber. In addition we studied the
following ex-situ and in-situ cleaning techniques:

*sample #45

5 min etch in 10% buffered HF

*sample #46
5 min etch in 10% buffered HF
10 min in-situ Hyp plasma clean (50W, 0.4torr chamber pressure)

*sample #49
5 min etch in 10 % buffered HF
20 min annealing at 7000C

All samples were grown under similar process conditions and were analyzed with
RBS and AES. The Auger depth profiles reveal that the oxide layer at the GaN/Si
interface has been successfully removed for samples #46 (Figure 6) and #49 (Figure
7). XPS data also shows that the oxygen level has been reduced to 1 - 2at%
throughout the GaN layer. |
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3.2 Crystalinity and morphology of the deposited films.

The XRD results show that the investigated films have hexagonal crystal
structure. This is expected as the cubic structure of GaN is metastable. The films were
polycrystalline and most of them exhibited preferred orientation in the (002) direction.

It can be seen that the chemical preclean (acetone, ethanol, DI water, 10% HF) greatly




improves the GaN signal. A further improvement in peak intensity as well as in the

linewidth is obtained by an in-situ annealing at 770°C (Figure 8).
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AFM measurements were also been performed. The samples were scanned on an
area of 1xlpym’. The measured grain size was between 3.5 - 32nm. From these
measurements we calculated the roughness of the samples to be between 2 - 8nm (as

shown above in Figure 9).




4) Identification of the proper seed layer (improved crystalinity of the GaN film)
4.1 Growth of InN buffer layer

In order to improve the crystalinity of the grown GaN film, we needed to grow an

appropriate buffer layer. We investigated different materials from the III-V group and
chose to grow an InN buffer layer for GaN films deposited on Si. We have identified
Inl, as an In precursor chemistry which is compatible with our current Ga precursor.

We used the following process parameters to deposit InN/Si :

Wafer temperature: 400 - 765 °C

In source temperature: 30-210 OC (melting point)

Process pressure: 0.5- 1.5 Torr .
Carrier gas flow (He): 25 - 50 sccm

RF plasma power: 0-200W. .

The thermal process showed no deposition of InN according to RBS analysis.
The plasma assisted process lead to minimal deposition of InN. Poor thermal stability
of InN therefore requires an unacceptably high deposition temperature (~1000°C -
typical problem for CVD of InN).

4.2 Growth of AIN buffer layer
AIN was another candidate discussed as a seed layer for GaN films. The
precursor used to deposit AIN in our studies was DMAH (dimethylaluminumhydrate).

The process parameters used to deposit this film on Si(100) are listed below:

Wafer temperature: 400 - 550 oC
In source temperature: 250C
Process pressure: 1.2- 1.5 Torr
Reactant gas flow ( N2): 200 - 900 sccm
Reactant gas flow (NH3): 100 -230 sccm
DMAH flow: 0.5-5.0 sccm
. RBS measurements show a near stoichiometric ratio of N to Al as 1.2 (Figure

10) with 4 at% of oxygen, less then 1at% of iodide, and carbon below the detection

limit of XPS (Figure 11). AIN films were polycrystalline showing the hexagonal

crystal structure (measured by XRD) with roughness ~1.lnm measured by AFM
(Figure 12).
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5) Characterization of the GaN/AIN Bl-layer.

Once a reproducible deposition process was established for AIN, we progressed to
bi-layers. The parameters of the individually optimized process windows for AIN and

GaN used in the deposition of the bi-layer on Si are listed below:

AIN GaN
Wafer temperature: 450 °C 500 °C
In source temperature: 26°C 160 °C (cooled after melting)
Process pressure: 1.2 torr 0.8 torr
Reactant gas flow : 700 sccm / N, 200 sccm /H,
Reactant gas flow (NH,): 100 sccm 200 sccm
Carrier gas flow (He): 25 sccm
deposition time: 5-15min 10min

Resulting films were measured by RBS and showed a Ga to N ratio of 1
indicating that the film was stoichiometric (Figure 13). Contamination levels measured

in these films by XPS shows 3at% of oxygen and less then 1at% of iodide in GaN layer.
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The 250A of AIN seed layer (5 min deposition time) resulted in the subsequent thickness
of 8604 of GaN (run #124) as measured by RBS. On the other hand, 13604 of AIN seed
layer (15 min deposition time) resulted in 14004 of GaN (run #123). This results points
to a possibility of different nucleation / growth mode for GaN when deposited on top of
the AIN layers with varying thickness.
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Figure 14 shows XRD spectra of three GaN/AIN bi-layers. Sample #123 (as
mentioned before) has a thick AIN underlayer of hexagonal crystal structure clearly
detectable by XRD. Sample #124 has three times thinner AIN underlayer with twice as
thick GaN layer. Therefore it is possible that our XRD set up might not be sensitive
enough to pick up signal from the AIN layer. Therefore the time of 10min for AIN
deposition was chosen for all other films in order to ensure the accuracy of XRD
measurements (this corresponds to ~500A thick AIN film - which is a thickness often
used for AIN buffer layers as cited in many publications on the deposition of epitaxial
GaN films). Figure 14 also shows the XRD of sample #125 (substrate temperature 600°C
for GaN growth). We can see the GaN grown at higher temperature on the top of AIN

buffer layer shows a narrowing of the (002) peak, when compared with films deposited in

11




the same manner at lower temperature (example #123 and #124), indicating improved

crystalinity.
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Most of the work was focused on achieving the epitaxial GaN/AIN layer on Si.
We introduced an annealing step between AIN and GaN deposition (recommended in
many publications on GaN epitaxial growth). We performed 13 runs investigating the
influence of the annealing temperature (400-700°C for 1 hour) on the orientation of the
grown films. After annealing in N, the GaN layers were grown at 550°C with thickness
ranging from 600 to 6000A. XRD measurements show GaN and AIN peaks in the
normal and grazing angle scans. The rocking curve measurement (for both AIN and GaN
peaks) shows a preferred orientation along the c-axis for samples annealed at 700°C. The
measurements also reveal a hexagonal crystal structure for both the AIN and the GaN
layers. This texture is not present for samples annealed at temperatures lower then 500°C

(see Figure 15).
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Conclusions

Significant milestone were achieved during our studies on the growth of the GaN.
We developed a low temperature VPE process to deposit this material. We were able to
deposit stoichiometric GaN on the Si . This work was supplemented with buffer layer
studies allowing for growth of high quaiity material (oxygen contamination level below

~3at%, iodide below 1at% and carbon below detection level of XPS).

We investigated the effect of the Si substrate cleaning (prior to the deposition of
GaN) on properties and characteristics of GaN film. In addition we studied the influence
of annealing steps on the crystalinity and morphology of the deposited materials.
Implementation of these findings in our final deposition process (bi-layers) allowed us to
demonstrate the feasibility of low-temperature VPE process for the growth of GaN/AIN

on Si.

XRD measurements showed hexagonal crystal structure of AIN and GaN layers
“with preferred orientation along the c-axis. In order to grow an epitaxial GaN high
process temperatures are required (~1000°C for CVD, ~800°C for MBE, and ~700 °C for
PACVD). Since our process was based on deposition in a range of 400 - 765 °C we were

not able to deposit an epitaxial GaN.
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